загрузка...

Пересекая границы: такой увидел Землю Брайан Бинни с корабля SpaceShipOne

Ни одна из этих идей не нова. Большинство из них витают в воздухе уже бог знает сколько лет. Космические лифты впервые предложил еще Константин Циолковский в 1905 г. Реализация всех этих идей с каждым годом — с появлением новых материалов — становится все более реальной. Углеродные нанотрубки уже получены в лаборатории. Сверхлегкий отражающий материал, необходимый для создания гигантских орбитальных зеркал, уже прочно вошел в нашу жизнь — из него теперь делают пакетики для чипсов.

И вообще, почему мы всегда скатываемся к обсуждению будущего? Уже сегодня мы используем космос достаточно активно и необычно, но явно недооцениваем эти достижения. После перелета на воздушном шаре через Тихий океан нам с Пером невероятно повезло: мы не замерзли насмерть на льду нашего озера где-то в Скалистых горах Канады (после нашего приземления то озеро переименовали в озеро Брэнсона!). В гондоле нашего шара был установлен самый современный на тот момент аварийный маячок, но тогда подобные системы связывались не со спутниками, а лишь с пролетающим вверху самолетом. Если бы в пределах радиуса действия нашего маячка не оказалось случайно грузового самолета Hercules канадских ВВС, нам пришлось бы дожидаться спасения гораздо дольше восьми часов. Сегодня, оказавшись на пустынном острове, я мог бы отправить аварийный сигнал через спутник при помощи своего мобильного телефона и воспользоваться другой функцией системы GPS, чтобы поискать из космоса воду, пока не прибудут спасатели. В цивилизованном мире мой телефон способен практически в любом городе мира привести меня туда, где можно прилично позавтракать.

Спутниковая связь и навигация оказывают самое очевидное и непосредственное влияние на нашу повседневную жизнь. Но, как ни странно, другим отраслям спутниковые технологии необходимы даже больше, чем системам связи. Возьмем, к примеру, непростой вопрос снабжения продовольствием. С момента моего рождения население Земли увеличилось втрое. Сегодня надо кормить втрое больше ртов, чем в конце Второй мировой войны. Мы опираемся на спутниковые изображения земной поверхности, чтобы производить достаточно пищи. Мы пользуемся надежными и подробными прогнозами погоды для повышения урожайности. По мере того как уменьшаются площади сельскохозяйственных земель, а растущее население причиняет планете все больше вреда, спутниковые наблюдения приобретают все большее значение. По спутниковым снимкам определяют, где именно нужно применять пестициды и удобрения, что снижает и себестоимость продуктов, и загрязнение среды; по ним предсказывают изменения в распределении земель и рассчитывают оптимальное землепользование, стараясь минимизировать ущерб для природы; по ним определяют масштабы и составляют карты разрушений при природных катаклизмах, таких как циклон «Наргис», пронесшийся в мае 2008 г. по Мьянме; по ним предсказывают колебания мировых цен на продукты питания.

Мировыми запасами продовольствия тоже управляют при помощи данных из космоса. И не надо говорить мне, что это управление несовершенно. Да, система страдает от жуткого неравенства. Но трудно даже вообразить, насколько все было бы хуже без информации из космоса: голодал бы примерно каждый десятый из нас.

Как же мы дошли до жизни такой, что только картинки из космоса отделяют нас от массового голода? Ответ — в числах: когда в 1968 г. на экраны вышел фильм «2001: Космическая одиссея», на планете жило менее четырех миллиардов человек. Теперь нас почти семь миллиардов. Ожидается, что, когда мои дети доживут до моего нынешнего возраста, Земле придется кормить около 10 млрд человек.

Космические снимки уже многие годы помогают поддерживать жизнь растущего человечества. Они помогают кормить нас и сохранять то немногое из естественной природной среды, что еще осталось. Но самое важное, наверное, то, что они впервые в истории дали нам возможность точно измерить, какой ущерб мы наносим планете. Если бы не они, не было бы ни мирового движения зеленых, ни международных усилий (хотя и в значительной мере безуспешных) по контролю выпуска в атмосферу парниковых газов, ни международного финансирования проектов по спасению дикой природы. Мы слепо брели бы навстречу крупнейшему экологическому кризису в истории Земли и не имели бы никакого представления о том, как скоро изменится наш образ жизни — изменится к лучшему или к худшему.

Истина проста: Земля не в состоянии обеспечить пищей и чистой водой 10 миллиардов человек, не говоря уже о необходимых всем им жилищах, дорогах, больницах и школах. Из этого ничего не получится. Космические технологии уже многие годы помогают поддерживать количество людей на нереально высоком уровне, но очень скоро — уже при наших детях — придется что-то менять. Численность населения так или иначе будет взята под контроль. Либо мы что-нибудь предпримем, либо кончится пища. Так или иначе, миллиарды человеческих существ исчезнут с лица земли.

Что мы можем сделать? Прежде всего, минимизировать вред, который человек наносит нашей планете. В этом космические технологии уже доказали свою ценность и будут продолжать делать это. Информационные технологии снижают число ненужных поездок. которые приходится совершать людям, по крайней мере в теории. К несчастью, сами они выпускают в атмосферу вдвое больше углерода, чем вся пассажирская авиация! Мы уже знаем, правда, как перенести всю индустрию ИТ на орбиту, и это хорошо. Там она сможет круглосуточно получать энергию из чистого, не прошедшего сквозь атмосферу солнечного света и поддерживать существование нашей цивилизации извне: климат скажет нам за это спасибо. (При использовании сегодняшних ракетных технологий даже ущерб от такого перемещения для окружающей среды будет исчезающе мал по сравнению с долгосрочными выгодами.)

Проблема в том, что как бы вы ни старались — как бы тщательно ни собирали и ни перерабатывали мусор, как бы яростно ни сражались за строительство солнечных электростанций, — ваши усилия ни к чему не приведут и не помогут решить главную, принципиальную проблему. На планете не может нормально жить больше пяти миллиардов человек. Не поймите меня превратно: глобальное потепление — это реальная опасность, им необходимо заниматься сегодня. Но эта опасность не может сравниться по масштабам с другой опасностью — той, что за ней стоит. Что будет, если 10 млрд человек на Земле будет жить (как жили на протяжении 1,8 млн лет) за счет сжигания органического топлива?

Необходимо сегодня же обратиться к этой проблеме. Китайцы уже попытались ввести у себя политику «одною ребенка». В каком-то смысле она была успешной; но говорят, что она загубила многие жизни и поставила государство перед самыми неожиданными социальными проблемами. Во всяком случае, бессмысленно рассчитывать на то, что весь мир согласится проводить такую политику. Рождение детей — одна из главных функций человека, как еда или дыхание, отстаивание своего мнения или приготовление пищи. Невозможно мановением руки изменить человеческую природу.

Что же еще можно предпринять? Ну, если у нашей планеты не хватает энергии для всех, придется добывать энергию в других местах — возможно, из солнечных батарей в космосе. Если мы можем переместить в космос тяжелую промышленность, то, возможно, найдем и место, где можно будет вырастить достаточно пищи — по крайней мере на какое-то время. Но что бы мы ни делали, проблема численности населения всегда будет наступать нам на пятки. Наша планета не станет больше.

Со временем, возможно, кто-то из нас решит поселиться за пределами Земли. Идея опять же не нова и при этом более серьезна и насущна, чем люди обычно думают. Стивен Хокинг объявил, что своим вхождением в проект Virgin Galactic намерен пропагандировать идею колонизации космоса.

Не исключено, что деловые поездки на Луну станут реальностью еще при моей жизни. Скорее всего, они будут связаны с горнорудными предприятиями по добыче гелия-3 на нужды термоядерных станций. NASA планировало в 2019 г. начать строительство лунной базы «Нил Армстронг». В настоящее время программа приостановлена, но заселение Луны теперь планируют не только американцы. Очень может быть, что, когда прилунятся первые после 1972 г. астронавты NASA, их встретят китайцы. Между тем 22 октября 2008 г. Индийской организацией космических исследований был запущен первый лунный зонд[25] с научной аппаратурой, имеющей отношение к гелию-3.

Еще одна возможность расселения человечества лежит гораздо ближе к нам. Поверхность планеты на две трети покрыта водой, но человечество пока почти ничего не знает об океанах, их исследование едва начато. В самом деле, пока человек только загрязняет и губит этот величайший из всех земных ресурсов. В данный момент ведущую роль в подводных исследованиях играют китайские, русские и американские военные, но их пилотируемые аппараты не могут опускаться глубже 6000 м; исследователи при этом могут только смотреть на окружающий их поразительный мир, и то без особого успеха. Ни о каком взаимодействии с ним пока нет и речи.

В настоящее время новая компания Virgin — Virgin Oceanic — изучает инвестиционные возможности в области глубоководных исследований. Мы уже наладили отношения с «морским Бертом Рутаном» — британским изобретателем Грэмом Хоуксом; в его подводной лодке четвертого поколения для исследования рифов Super Aviator, как явствует из названия, применены все те же принципы авионики. Она буквально летит сквозь воду, позволяя пилотам прекрасно видеть все вокруг!

Грэм считает, что на тех же принципах можно построить и глубоководный аппарат — действительно глубоководный: судно, о котором он говорит, сможет достигать глубины свыше 10 000 м! Углеродное волокно и металл не выдержат таких давлений; но стекло выдержит.

Стекло, как ни странно, не является твердым веществом; это жидкость, которая течет очень-очень медленно, что придает ей невероятную устойчивость к большим давлениям. Мы надеемся, что стеклянная подводная лодка Virgin Oceanic станет океанским аналогом SpaceShipOne. Кроме всего прочего, мы ведем переговоры с самыми яростными конкурентами Грэма: его бывшей женой и ее сыном, у каждого из которых своя независимая компания! Я с нетерпением жду, чем обернутся в ближайшие годы усилия всех троих.

Период невесомости почти закончился. Мать-земля начинает потихоньку тянуть нас вниз, вынуждая вернуться на места. SpaceShipTwo готовится закрутиться, как семечко клена, и вновь нырнуть в плотные, пригодные для полета на крыльях слои атмосферы. На фоне наших представлений и мечтаний о будущем рейс Virgin Galactic выглядит очень скромно. Но это не заставит нас отказаться от своей мечты. В конце концов, Хенсон и Стингфеллоу составили расписание и назначили цены на билеты для международной пассажирской авиалинии задолго до того, как первый самолет поднялся в воздух. Бипланы, развозившие в США почту в 1920-е гг., проложили маршруты для нынешней сети внутренних авиаперевозок. Одна из долгосрочных целей Virgin Galactic — наладить маршруты с континента на континент через суборбитальный космос, уменьшив при этом в разы время в пути и выбросы углекислого газа. Чтобы чего-нибудь добиться в этом мире, надо замахиваться на невозможное.

До каких бы уголков Солнечной системы мы ни добрались, как бы далеко ни проникли в космос, мы постоянно будем придумывать новые способы перемещения в пространстве для себя и своих машин. Начало космической эры не означает конца авиации. Наоборот. Каждая новая планета и каждая новая луна будут ставить перед авиаторами будущего новые уникальные задачи. Появятся новые летательные аппараты, а старые и давно забытые будут придуманы и изобретены вновь. Одна из самых привлекательных черт авиации — и, я думаю, других инженерных дисциплин тоже — состоит в том, что хорошие идеи никогда не устаревают, и забытые чертежи всегда можно вытащить из пыльной кладовой и адаптировать к современности.

Уже начата работа по завоеванию марсианских небес. У Марса жалкая, чрезвычайно разреженная атмосфера. Обычным самолетам будет тяжело летать в таком жидком «воздухе», и проекты марсианских самолетов предусматривают надувные крылья и машины, имитирующие полет насекомых. Но можно заставить работать и существующие конструкции воздушных шаров и самолетов, особенно теперь, когда верхний слой обшивки можно сделать фотогальваническим и прямо в полете собирать энергию Солнца. NASA финансирует компанию под названием Global Aerospace Corporation; компания проводит исследования по созданию марсианского «аэробота» — роботизированного летательного аппарата, который должен будет нести гондолу с научным оборудованием и несколько небольших зондов, которые можно будет сбрасывать на поверхность Красной планеты.

Венера предъявляет авиаконструкторам совершенно иные требования. Планета укутана плотным слоем облаков, и над этим слоем летательные аппараты достаточно хорошо справляются со своей задачей. Мы уже знаем это, потому что в 1986 г. совместная советско-французская экспедиция успешно сбросила в венерианскую атмосферу два гелиевых аэростата. Аэростаты устроились на высоте около 55 км над поверхностью планеты и передавали ученым данные о местной погоде. Поскольку Венера располагается ближе к Солнцу, чем Земля, мы знаем, что будущие воздушные суда смогут без труда получать энергию от солнечных элементов. Среди конструкций венерианских аэропланов есть и обычные, и совершенно невероятные. Мой любимый проект — «твердотельный» самолет; по существу, это единственное фотогальваническое крыло, сделанное из искусственной мышечной ткани, которое будет парить в верхних слоях венерианской атмосферы, подобно ястребу или орлу!

Подобраться ближе к поверхности планеты непросто. Облака Венеры состоят из чистой серной кислоты. Большая часть атмосферы — углекислый газ, и его здесь так много, что атмосферное давление на поверхность планеты превосходит земное в девяносто два раза. На поверхности Венеры атмосферное давление просто раздавило бы человека в лепешку. Другой эффект углекислого газа в атмосфере — тепло, которого здесь очень много. В пасмурный день — а дни на Венере всегда пасмурные — поверхность планеты прогревается до 460 °C; там жарче, чем на поверхности Меркурия. Лаборатория реактивного движения NASA в Пасадене проектирует аэробот, который будет просто скидывать зонды на поверхность и принимать информацию, которую они успеют сообщить, прежде чем температура и давление выведут их из строя. Другой проект предусматривает создание аэростата с двухфазным рабочим телом на гелии и воде, который будет нырять к поверхности планеты за образцами, а затем подниматься и запускать собранные образцы на маленьких ракетах на орбиту, где их будет подбирать орбитальный аппарат.

К счастью, в большинстве своем иные миры, которые мы собираемся исследовать, гораздо менее враждебны к человеку, чем Венера. Титан, самый крупный спутник Юпитера, имеет вдвое более плотную атмосферу, чем Земля, и состоит в основном из азота и нефтехимических соединений. Летательный аппарат мог бы без проблем опуститься на поверхность этой луны в поисках сложных органических соединений, которые, по мнению ученых, могут там скрываться. Джулиан Нотт — аэронавт, пролетевший в 1975 г. на тепловом аэростате над пустыней Наска, — считает, что в тамошних идеальных условиях воздушный шар сможет летать десятилетиями. И это не пустые рассуждения: последние пять лет Джулиан работает вместе с Лабораторией реактивного движения над подробным проектом надувных зондов для Титана.

Юпитер тоже доступен для исследования из верхних слоев атмосферы. Юпитерианские летательные аппараты, естественно, будут совершенно не похожи на своих марсианских родичей. Юпитер слишком далеко от Солнца, чтобы полагаться только на солнечную энергию. Вместо этого им придется получать энергию из инфракрасного излучения самой планеты-гиганта. Кроме того, юпитерианская атмосфера — это по большей части водород, так что аэростаты, очевидно, нельзя наполнять ни водородом, ни гелием. В юпитерианской атмосфере смогут летать только тепловые аэростаты — монгольфьеры. Не правда ли, чудесно, что технология 1783 г. может когда-нибудь оказаться полезной там, в далеких просторах Солнечной системы?

Мы возвращаемся домой, медленно падаем сквозь стратосферу вниз, на землю, вращаясь как кленовое семя. Здесь нет бурь, нет холодных и теплых атмосферных фронтов; здесь вообще нет погоды. В стратосфере теплый воздух всегда движется поверх холодного, а температура стабильно падает до жуткого холода — примерно до -60 °C. На этих морозных высотах нетрудно представить, что жизнь на Земле течет так же спокойно, стабильно и предсказуемо.

Однако где-то между пятнадцатью и восемью километрами над поверхностью происходит что-то странное. Чем ниже мы опускаемся, тем жарче становится. Нижние слои атмосферы греются от земли. Нагреваясь снизу, как вода в кастрюле на плите, они перемешиваются и закручиваются. Массы теплого воздуха сквозь холодные слои прокладывают себе путь вверх, а тяжелые пласты холодного воздуха устремляются вниз, к поверхности планеты, бешеные ветры соприкасаются друг с другом, заряжая атмосферу электричеством. На ночной стороне земного шара сверкают молнии. Бурное дно атмосферного океана образует тропосферу. Здесь живет погода. И в какой-то степени — мы, по крайней мере большую часть времени. В этом густом и бурлящем воздухе разворачиваются наши крылья: SpaceShipTwo становится обычным планером.

Приближается посадка.

Вернувшись назад, в непогоду, вновь ощутив на себе действие дождя, тумана и метелей нашего неверного повседневного мира, нельзя не задуматься: что дальше? Сбудутся ли наши мечты? Сможем ли мы на самом деле составить карты иных миров, научимся ли добывать руды на астероидах и получать от Солнца неограниченную энергию? Предсказывать будущее — неблагодарная задача. Даже погоду трудно понять до конца. Метеоролог Боб Райс помнит время — совсем недавнее, 1970-е гг., — когда метеоролог мог предсказать погоду в лучшем случае на сутки вперед. На составление прогноза на 24 часа уходило столько времени, — вспоминает он, — что на 48-часовой прогноз его практически не оставалось. Когда же мы переходили к 72-часовому прогнозу, мы могли вместо расчетов просто метать дротики в мишень.

Прогнозирование поведения атмосферы с тех пор несколько продвинулось. А вот человеческая погода — как бы мы ни старались, как бы ни думали, сколько бы наук ни изучили, мы практически не приближаемся к пониманию ее механизмов. Сами для себя мы остаемся величайшей загадкой. Сможем ли мы, как говорил Джо Киттингер, ужиться с космосом? Научимся ли жить в космосе? Или останемся на земле, и человеческая цивилизация рухнет под собственной тяжестью? Вылупимся ли мы из яйца Земли или так и умрем в скорлупе?

Мир не умеет сдерживать удары. Если мы проживем ближайшие сто лет неверно, мы погибнем. Это так же точно, как то, что наш космический корабль разбился бы, если бы его пилот не был умным, преданным и внимательным; если бы посадочная полоса не была готова, хорошо освещена и хорошо подготовлена.

Космопорт под нами похож на громадный немигающий глаз. День и ночь он вглядывается в звезды.

<< | >>
Источник: Ричард Брэнсон. Достичь небес. Аэронавты, люди-птицы и космические старты. 2013

Еще по теме Пересекая границы: такой увидел Землю Брайан Бинни с корабля SpaceShipOne:

  1. Глава I Пересекая границу: Путешественники XVIII века открывают Восточную Европу
  2. БРАЙАН ТРЕЙСИ
  3. БРАЙАН ТРЕЙСИ
  4. Трейси Брайан. Привычки на миллионы долларов, 2005
  5. Дивизион сторожевых кораблей
  6. Штабные корабли
  7. Татьяна Устинова. С небес на землю, 2011
  8. Линейный корабль «Советский Союз» (проект 23), СССР, 1944г.
  9. Линейный корабль «Кинг Джордж V», Англия, 1940 г.
  10. 69. ФОРМЫ ПРАВ НА ЗЕМЛЮ. СОБСТВЕННОСТЬ